Brain Chemistry

Being from the United States, a country that is facing the harsh issue of obesity, I decided that it would be very interesting to research about exercise. Caroline wrote a blog post about brain chemistry and she put much emphasis on dopamine.  I found it very interesting that altered levels of dopamine can have such a large affect on the body.  I wondered what kinds of chemicals and neurotransmitters were released when someone exercised.  When you think about it, many people get incredibly positive effects from exercise, meaning that it must force a release of something in the brain to induce this.  But which neurotransmitters and hormones are responsible for this? Since we just recently did the medicines and drugs unit, I thought it would be beneficial and quite helpful to be able to research about exercise and be able to truly understand what it all means.  When I was doing my primary research, all kinds of things came up about how exercise makes you smarter, fixes health problems, reduces stress, helps you become more fit, and much more.  Wouldn’t everyone be exercising a very large amount if they knew this?


To begin, regular exercise can alleviate anxiety and boost energy. When you exercise, you work your heart, thus making it stronger, but also increased heart pumping increases the release of certain types of neurotransmitters, such as serotonin, norepinephrine and GABA. Even small amounts of activity can help the body be more resistant to stressful situations even hours later. To expand on the effects of these neurotransmitters, serotonin (C10H12N2O) leaves you happier and more relaxed after working out. (Branch, S.) This is because the physical activity stimulates the release of these chemicals. When reading about this, I automatically thought of all of the drugs we learned about.  I went back to the mouse party simulation and reviewed how these drugs work. I noticed something in common with all of these drugs; they all have relate in the way they work with chemicals in the brain. All of the drugs either work with serotonin, dopamine or GABA receptors. For example, LSD deals with the serotonin receptors.  It binds to serotonin receptors and it binds to various ones, sometimes inhibiting them and sometimes exciting them. LSD excites a particular part of the brain, the locus coeruleus. This area of the brain forms feelings of wakefulness, etc.  LSD also has effects such as changed body temperature and heart rate which also occurs when you exercise.(Mouse Party)  To connect this to exercising, when you exercise, serotonin is released, making the person who was working out feel more relaxed and happy. Even though exercise is not a drug that chemically alters the brain, it certainly acts in similar ways as many drugs are meant to act.


Although exercise is certainly not a drug and usually it can be closely connected because it has many of the same effects and usually creates better moods, more relaxation, and a more stimulated brain. With this being said, it is not to get mixed up because drugs also have many negative effects which are not associated with exercising.  Additionally, norepinephrine is a very important neuromodulator in the brain.  Many scientists believe that the norepinephrine concentrations are much higher in the brain during physical activity, thus leading to the body being able to deal with stress more effectively. 50% of norepinephrine is created in the LC (locus coeruleus) and this area of the brain is “involved in emotional and stress responses.”(Dishman, R.)

Serotonin

Serotonin Structure

Serotonin Neuron

Serotonin Neuron

Endorphins also play a key role in helping to decrease stress levels.  Endorphins are created in the “pituitary gland in response to stress or pain. They bind to opioid receptors in neurons, blocking the release of neurotransmitters and thus interfering with the transmission of pain impulses to the brain”.(McGovern, M.) When you exercise, the activity stimulates the release of endorphins and these help you to deal with the stress and pain dealt with during exercise. For example, “runners high” is considered to be because the increased release of endorphins is responsible for the euphoria feeling after running and thus the runner feels a very happy, relaxed feeling. (McGovern, M.) Endorphins are much like drugs in the way that their effects have a very addictive effect and the person exercising builds a tolerance to these, and must exercise more to get the same euphoria feeling over time. “In fact, endorphins attach to the same neuron receptors as opiates such as morphine and heroin.” (McGovern, M.) Many scientists believe that only a small amount of people exercise regularly because the endorphins take about 30 minutes to kick in.  This means that the person doesn’t feel these positive effects until a while after their exercise and only associates exercising with stress and pain.


To continue, exercise and physical activity can also make your brain stronger, thus leading to a more efficient brain. “Exercise slows the loss of gray matter in the brain.” This is because the chemicals that are produced and released while exercising help to fight brain-killing chemicals that are produced during stressful periods. According to Forbes, “ In the long term, it [exercise] can even help starve off brain aging and Alzheimer’s. This works on the cellular level through neuroplasticity, the ability of the brain to improve itself with blood flow and levels of brain-derived protein. He calls it “miracle-gro” for the brain, and it all comes from regular exercise!” Neuroplasticity changes the neural pathways when changes in behavior, environment, or even injuries.  Neuroplasticity is very recognized “in healthy development, learning, memory, and recovery from brain damage.”(Branch, S.) I think that this is very important because when you exercise and work your body and strengthen your brain, very complicated processes take place to alter and help the brain to possibly recover, and or build cells, etc.


To continue, when exercise takes place, the stress you put on your own body forces the brain to create new neurons (called neurogenesis) “especially in the hippocampus- the area in charge of learning and memory”.  This happens because when exercise occurs, you are stressing your body and it’s systems and in order for it to recover, it needs to repair this damage.  This is significant because it leads to an “increase in brainpower” and thus makes the brain more efficient and stronger. (Andersen, C.) This gets mixed up very frequently with the thought that if you exercise enough, you will be a genius. This is not true.  If you overexercise, it is possible that your brain will actually become weaker and it will be more difficult to learn.

hippocampus

Hippocampus in the Brain


While it may not be possible to exercise enough to become a genius, it is definitely possible “to exercise to happiness.”(McGovern, M.) To understand how this works, when a person becomes depressed, they show a lack of vital neurotransmitters such as norepinephrine and serotonin.  As said before, exercise increases the concentration of these neurotransmitters in the brain, thus leading to an increased mental health and stimulating the brain.  As seen below, the depressed brain has much less activity in it, while the “not-depressed” brain has much more activity.  When exercise occurs and the concentration of positive neurotransmitters increases, depression can be alleviated.


c7_pet_depression

Effects of Depression on the Brain


When I did my research, I couldn’t help but connect this to economics.  Even though this is a health aspect, it has many economic effects. Every year, the United States spends millions, even billions on health care and running can have so many positive effects on the body that could potentially lower these costs. If physical education and exercise was incorporated into schools more, depression rates could drop, obesity could start to plateau and stop growing, and the government in turn could save large amounts of money on healthcare and put it to other causes, such as research and development to help healthcare in the future.  But first, the mentality needs to change.  People have become lazy and thus don’t have any motivation to exercise.  More education needs to take place to educate children and adults on the dangers of obesity, and also the positive effects of exercise on your body.

References

Websites:

Andersen, C. (n.d.). Exercise and the Brain: 4 Ways Working Out Changes the Human Brain – Shape Magazine. Shape Magazine – Diet, Fitness, Recipes, Healthy Eating Expertise. Retrieved May 30, 2013, from http://www.shape.com/lifestyle/mind-and-body/your-brain-exercise


Branch, S. (2011, February 24). How Exercise Alters Brain Chemistry | LIVESTRONG.COM. LIVESTRONG.COM – Lose Weight & Get Fit with Diet, Nutrition & Fitness Tools | LIVESTRONG.COM. Retrieved May 30, 2013, from http://www.livestrong.com/article/390773-how-exercise-alters-brain-chemistry/


Cohen, J. (2012, May 8). 6 Ways Exercise Makes You Smarter – Forbes. Information for the World’s Business Leaders – Forbes.com. Retrieved May 30, 2013, from http://www.forbes.com/sites/jennifercohen/2012/05/08/6-ways-exercise-makes-you-smarter/


Dishman, R. (n.d.). Exercise Fuels the Brain’s Stress Buffers. American Psychological Association (APA). Retrieved May 30, 2013, from http://www.apa.org/helpcenter/exercise-stress.aspx


Exercise: 7 benefits of regular physical activity – MayoClinic.com. (n.d.). Mayo Clinic. Retrieved May 30, 2013, from http://www.mayoclinic.com/health/exercise/HQ01676


Girdwain, J. (2013, May 28). How to fix health problems with exercise – CNN.com. CNN.com – Breaking News, U.S., World, Weather, Entertainment & Video News. Retrieved May 30, 2013, from http://www.cnn.com/2013/05/28/health/fix-problems-exercise/index.html?hpt=he_t2


McGovern, M. (n.d.). The Effects of Exercise on the Brain. Serendip Studio. Retrieved May 30, 2013, from http://serendip.brynmawr.edu/bb/neuro/neuro05/web2/mmcgovern.html


Mouse Party. (n.d.). Learn. Genetics. Retrieved May 30, 2013, from learn.genetics.utah.edu/content/addiction/drugs/mouse.html

Images:

N/A. PET scan of the brain for depression. N.d. Mayo Clinic, N/A. Mayo Clinic. Web. 30 May 2013.

N/A. Hippocampus. N.d. Memory Loss & The Brain, Rutgers University. Memory Loss Online. Web. 30 May 2013.

N/A. Serotonin. N.d. Serotonin, N/A. Chemistry-Reference. Web. 30 May 2013.

N/A. What is Serotonin?. N.d. N/A, N/A. News-Medical. Web. 30 May 2013.

Leave a Reply

Your email address will not be published. Required fields are marked *